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Abstract.  The purpose of this paper is to summarize, from a personal 
viewpoint, some research in structural dynamics within the Department of Civil 
Engineering at the University of California at Berkeley during the period of 
1950 to 1990.  The second part of the paper is to present a few recently 
developed numerical algorithms for dynamic analysis that are required in the 
design of wind, wave and earthquake resistant structures. These algorithms 
have been incorporated into the SAP 2000 programs (developed by Computers 
and Structures, Inc. in Berkeley) and have been used in the analysis of hundreds 
of large structural systems. This most recent research and development work 
was conducted since the author’s retirement in1991 from teaching at the 
University. 
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1. Structural Dynamics Research at UC Berkeley 1950 to 1990 

1.1. INTRODUCTION  

The University of California was established in 1868 and was authorized to 
teach courses in several different disciplines, including Military Science and 
Civil Engineering, CE. At that time the other engineering disciplines did not 
exist.  By the time this author started his undergraduate work in early nineteen 
fifty the undergraduate courses in dynamics were conducted by faculty 
members from the department of Mechanical Engineering, with emphasis on 
rigid body dynamics. 

The Building Codes that were used in structural engineering design courses 
for buildings and bridges did not contain the words earthquake or seismic 
forces.  Also, the majority of the structural engineering faculty at Berkeley did 
not seem to be concerned about the effects of dynamic loading. 

In 1949 Professor Ray Clough joined the CE faculty and began teaching a 
graduate structural dynamics course for students in CE and the Naval 
Architecture departments.  Clough had also been a weather officer in the US 
Army Air Corps during WWII and had developed an appreciation of natural 
disasters. 

In 1953 Professor Joseph Penzien joined the CE faculty3.  Both Ray and Joe 
had received their undergraduate degrees from the University of Washington 
and their Doctors’ degrees from Massachusetts Institute of technology.  In 
addition, both had extensive practical experience with the analysis of aircraft 
structures and blast analysis of all types of structures.  They appeared to have a 
similar educational and practical background; however, their approach to the 
solution of dynamic problems was often very different.  Their collaboration 
during the next 25 years resulted in the publication of the classical textbook 
Dynamics of Structures in 1975.  In 2003, the latest edition of the book was 
reprinted and can be obtained from CSI in Berkeley1. 

During the early nineteen fifties very little research funding was available 
for research in the area of structural dynamics.  Therefore, both Clough and 
Penzien were forced to take summer employment at companies, such as Boeing, 
and to work for local engineering firms as consultants.    

However, during the late nineteen fifties and early nineteen sixties funded 
research projects increased significantly for the following reasons: 

First; the CE faculty members hired during the twenty years after World 
War II were young and energetic with excellent practical experience and 
impressive educational backgrounds.  Also, the majority of the new faculty was 
capable of conducting both experimental and theoretical research. 
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Second; the introduction of the digital computer required that new 
numerical analytical methods be developed.  The early work of Professor 
Clough in the creation of the Finite Element Method is an example of a new 
method that revolutionized many different fields in engineering and applied 
mathematics. 

Third; the Federal Government and the California Department of 
Transportation were rapidly expanding the freeway system in the state and were 
sponsoring research at Berkeley, led by Professors Scordelis and Monismith, 
concerning the behavior of bridges and overpass structures. 

Fourth; it was the height of the Cold War and the Defense Department was 
studying the cost and ability to reinforce buildings and underground structures 
to withstand nuclear blasts.   

Fifth; the manned space program was a national priority. Professors Pister, 
Penzien, Popov, Sackman, Taylor and Wilson were very active conducting 
research related to these activities.   

Sixth; the offshore drilling for oil in deep water and the construction of the 
Alaska pipeline required new technology for steel structures, which was 
developed by Professors Popov, Bouwkamp and Powell. 

Finally; after the 1964 Alaska earthquake (and small tsunami that hit 
northern California) the National Science Foundation initiated a very significant 
program on Earthquake Engineering Research. 

To support this research and development a new Structural Engineering 
Building, Davis Hall, was completed in 1968 on the Berkeley campus and a 
large shaking table, to simulate earthquake motions, was constructed at the 
Richmond Field Station (1971). 

1.2. THE EARTHQUAKE ENGINEERING RESEARCH CENTER 

Professors Penzien and Clough wrote a formal proposal to the University 
requesting the creation of the Earthquake Engineering Research Center, EERC.  
The proposal was approved by the University Administration and Professor 
Penzien was named as the first director of the Center in December 1967.   

EERC was approved as an Organized Research Unit, ORU; however, the 
center was not given a budget.  Therefore, Professors Penzien, Clough and 
many other members of the UC faculty spent a significant amount of time, in 
addition to their normal teaching responsibilities, to obtain more permanent 
funding for the Center.  During the first several years of EERC the National 
Science Foundation provided a significant amount of the funding for the Center 
and the construction of the world’s largest shake table. 



EARTHQUAKE ENGINEERING AT BERKELEY 4 

1.3. IMPACT ON THE STRUCTURAL ENGINEERING ACADEMIC PROGRAM 

The existence of EERC and the pioneering Finite Element Research 
Programs in the Division of Structural Engineering and Structural Mechanics, 
SESM, within the Department of Civil Engineering, made the Graduate 
Program at Berkeley very popular.   The finite element research was 
complimented by the unique and modern dynamic experimental facilities at 
EERC. 

The SESM program attracted a very large number of bright national and 
international students. In addition, many post doctoral research scholars and 
faculty members from other universities spent one or more years at Berkeley.   

1.4.  WORKING UNDER THE DIRECTION OF PROFESSOR CLOUGH 

In 1960 -63 the author, as a doctoral student working under the supervision 
of Professor Ray Clough, developed the first fully automated finite element 
program for two-dimensional plane structures.  Also, several other students 
working with Professor Clough extended the program to include the effects of 
nonlinear material crack closing and creep.  In addition to completing a 
Doctor’s degree with Professor Clough, the author had the opportunity to assist 
him with consulting activities involving the earthquake and blast response 
analysis of many different buildings and bridges.   

1.5. EXPERIENCE WORKING IN THE AEROSPACE PROGRAM 

The author worked as a Senior Development Engineer at Aerojet General 
Corporation in Sacramento, CA during the period 1963 to 1965.  He was 
responsible for the development of numerical methods and computer programs 
for the structural analysis of the Apollo spacecraft and other rocket components. 
The experience was very frustrating since engineers were not allowed to 
conduct dynamic analysis if they were assigned to a static analysis group.  
However, the author did learn that it was possible to design elastic structures to 
withstand forces greater that ten times the force of gravity.  In August 1965 the 
author returned to UC Berkeley as an Assistant Professor of Structural 
Engineering. 

1.6. THE SAP SERIES OF COMPUTER PROGRAMS 

In the mid and late nineteen sixties, many different Universities and 
companies were working on general purpose programs which assumed that 
each joint has six displacement degrees of freedom (three displacements and 
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three rotations).  In general, most of these programs were developed by groups 
of ten or more engineers and programmers.  

In 1969 the Author realized that it was possible to develop a general purpose 
Structural Analysis Program4 (SAP) that was simple and efficient. The key to 
the simplicity of SAP was to create, within the program, an equation ID array 
dimensioned 6 by the number of joints (nodes).  The boundary conditions and 
the type of elements connected to each joint determined if an equilibrium 
equation existed.  Therefore, the stiffness matrix could be directly formed in a 
compact form.  The majority of the program was written by the Author.  Five 
graduate students, working part-time, incorporated several different elements 
from previously written special purpose programs.  The total time required for 
the program development was less than a man-year.  The development was 
funded with small grants from local structural engineering companies. The 
three-dimensional solid element was sponsored by the Walla Walla District of 
the Corps of Engineers. The first version of SAP3 was released within a year 
(1970).  The dynamic response was based on the automatic generation of one 
set of Ritz vectors.  At the time of release it was the fastest and largest capacity 
structural analysis program of its time. 

Development of SAP continued for the next few years with sponsorship 
from users of the program.  Dr. Klaus Jürgen Bathe was responsible for the 
final version of the program6, SAP IV, in 1972.  Dr. Bathe incorporated his 
‘Subspace Iteration Algorithms” for the evaluation of the exact eigenvalues and 
vectors of very large structural systems5.  In addition, he was responsible for 
documentation and international distribution of the program.  

In addition, Dr. Bathe developed a completely new static and dynamic 
computer analysis program, NONSAP7. It was designed to solve general 
structures with nonlinear material, large strains and large displacements.   Later 
at MIT Professor Bathe continued this research and developed the ADINA 
program. 

All computer programs developed during this early period at Berkeley were 
freely distributed worldwide, allowing practicing engineers to solve many new 
problems in structural dynamics. Hence, the research was rapidly transferred to 
the engineering profession.  In many cases the research was used professionally 
prior to the publication of a formal paper. 

Regarding the distribution of the FORTRAN programs from the University, 
it was made clear that the programs were not to be resold. However, this was 
not the case.  Many companies and other Universities created, distributed and 
sold modified versions of the program.  In addition, some obtained government 
funding to modify the UC programs.  At the same time, proposals by this author 
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to NSF for research on numerical methods for dynamic analysis were not 
funded  

1.7. RESEARCH AT UC DURING THE NINETEEN EIGHTIES 

The author had several excellant doctoral students during the nineteen eighties 
that worked on many important problems in computational mechanics, 
incremental construction, dam-reservoir interaction, parallel processing and 
structural dynamics.  One of the most significant accomplishments during the 
period was proving that the exact dynamic eigenvalues and vectors were not the 
best basis for performing dynamic analysis by the mode superposition method 
8,9,10,11.  It was shown that Load Dependent Ritz vectors could be generated by a 
simple algorithm that was faster than the subspace iteration algorithm and 
always produced more accurate results than the use of the exact eigenvalues and 
vectors. 

1.8. THE INTRODUCTION OF THE INEXPENSIVE PERSONAL COMPUTER 

On a leave from the University, in 1980 the author purchased an 
inexpensive ($6,000) personal computer with the CPM operating system. It had 
a FORTRAN compiler; however, it had only 64k of 8 bit high-speed memory 
and limited low-speed disk storage.  Therefore, it was impossible to move large 
mainframe programs to these small personal computers. However, it was an 
opportunity to write a completely new general purpose structural analysis 
program that would incorporate the latest research in finite element technology 
and numerical methods that had been developed since the release of SAP IV in 
1973.  The most significant changes was in the dynamic analysis method where 
Load Dependant Ritz (LDR) modal vectors8 were introduced as and option. 

The small amount of high-speed memory on the first personal computers 
required that a structural analysis program be subdivided into separate program 
modules which were executed in sequence via batch files.  For example, the 
preprocessing, formation of each different type of element stiffness matrix, the 
assembly of the global stiffness matrix, solution of equation, solution for 
eigenvalues, integration of modal equations, calculation of element forces 
plotting and post processing were all separate programs.  Therefore, the first 
version of SAP 80 was very easy to develop and maintain. Also, it 
automatically had a restart option.  In order to avoid a conflict of interest with 
his research at the University, the author did not use one line of code from SAP 
IV and personally did all the SAP 80 development work at his home office on 
his personal computer. 
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After the release of the 16 bit IBM personal computer in 1983 with 64 bit 
floating point hardware, large capacity hard disks, and a standard colored 
graphics terminal, it was possible to solve large practical structural systems.  At 
this point in time it was apparent that the development of SAP80 required 
additional staff.  The author made an agreement with a former UC student, 
Ashraf Habibullah president of Computers and Structures, Inc. (CSI), to add 
design options and graphical pre and post processors to SAP 80 in order that it 
would better serve the needs of the structural engineering profession and to 
provide professional support to the users of the program. This association with 
CSI has continued for nearly 25 years and has been very successful in the 
transfer of the latest research to the structural engineering profession.  In 
addition, CSI has created a special purpose program of SAP2000 for multistory 
buildings, ETABS, This program has special pre and post processing 
capabilities and automatic design options for earthquake engineering. 

2. Research and Development at CSI to Present 

2.1. SAP 90 AND SAP 2000 

In 1990 the Author had a mild heart attack and decided to retire from teaching 
at the University and work at a more leisurely pace with CSI on the 
development of the next version of the program, SAP 90.  A new improved 
SOLID element, three degrees of freedom per node, and a new thin or thick 
shell element, six degrees of freedom per node, were implemented.   

By 1990 the earthquake engineering profession was beginning to use 
nonlinear base isolation and energy dissipation devices to reduce the response, 
and damage, of structures to earthquake motions.  Therefore, there was a strong 
motivation to add this option to SAP 90.   

The approach used to solve this class of nonlinear problems was to move 
the nonlinear force associated with these elements to the right hand side of the 
node point equilibrium equations; then, solve the uncoupled modal equations by 
iteration as the mode equations are integrated11.  Since the nonlinear forces are 
treated as external loads, LDR vectors must be generated for each of these 
nonlinear degrees of freedom.  This new approach is named the Fast Nonlinear 
Analysis, FNA, method. 

2.2. EXAMPLES OF NONLINEAR ELEMENTS 

Local buckling of diagonals, uplifting at the foundation, contact between 
different parts of the structures and yielding of a few elements are examples of 
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structures with local nonlinear behavior.  For dynamic loads, it is becoming 
common practice to add concentrated damping, base isolation and other energy 
dissipation elements.  Figure 1 illustrates typical nonlinear problems.  In many 
cases, these nonlinear elements are easily identified.  For other structures, an 
initial elastic analysis is required to identify the nonlinear areas 

Figure 1. Examples of Nonlinear Elements 
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After several years experience with the application of the FNA method on 
hundreds of large structural systems, it was found that the method could fail if 
there was very small or no mass associated with the nonlinear force.  Therefore, 
it was necessary to modify the LDR vector algorithm in order that certain static 
vectors are included in the FNA method. 

3. New Load Dependent Ritz Vector Algorithm and Error Analysis  

3.1. THE COMPLETE EIGENVALUE SUBSPACE 

In the analysis of structures subjected to three base accelerations there is a 
requirement that one must include enough modes to account for 90 percent of 
the mass in the three global directions.  However, for other types of loading, 
such as base displacement loads and point loads, there are no guidelines as to 
how many modes are to be used in the analysis.  In many cases it has been 
necessary to add static correction vectors to the truncated modal solution in 
order to obtain accurate results.  One of the reasons for these problems is that 
number of eigenvectors required to obtain an accurate solution is a function of 
the type of loading that is applied to the structure.  However, the major reason 
for the existence of these numerical problems is that all the LDR vectors of the 
structural system are not included in the analysis. 

In order to illustrate the physical significance of the complete set of LDR 
vectors for a structure consider the unsupported beam shown in Figure 1a.  The 
two-dimensional structure has six displacement DOF, three rotations (each with 
no rotational mass) and three vertical displacements (each with a vertical 
lumped mass).  
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Figure 2.  Rigid-Body, Dynamic and Static Modes for Simple Beam 

The six stiffness and mass orthogonal eigenvectors with frequency nω , in 
radians per second, and period nT , in seconds, are shown in Figure 1b to 1g.  
The maximum number of natural eigenvectors that are possible is always equal 
to the number of displacement DOF.  The static vectors (modes) have infinite 
frequencies; therefore, it is not possible to use the classical definition that the 
eigenvalues are equal to 2

nω  if the eigenvalues are to be numerically evaluated.  
A new definition of the natural eigenvalues and the new algorithm used to 
numerically evaluate the complete set of natural eigenvectors will be presented 
in detail later in the paper. 

Note that the rigid-body modes only have kinetic energy and the static 
modes only have strain energy.  Whereas, the free vibration dynamic modes 
contain both kinetic and strain energy; and, the sum of kinetic and strain energy 
at any time is a constant. Also, the eigenvectors with identical frequencies are 
not unique vectors.  Any linear combination of eigenvectors, with the same 
frequency, will satisfy the orthogonality requirements. 

3.2. STRUCTURAL EQUILIBRIUM EQUATIONS 

The static and dynamic node-point equilibrium equations for any structural 
system, with Nd displacement degrees-of-freedom (DOF), can be written in the 
following general form: 

)(,, =  + tt)((t)(t)(t) D gFuuRRuKuM =+ &&&  (1) 

∞== 11 0 Tω

(a) Beam Model

(b) Rigid Body Mode

(c) Rigid Body Mode

(d) Dynamic Mode

(e) Static Mode

(f) Static Mode

(g) Static Mode

100 100

I = 1.0 E=10,000

M=0.05 M=0.10 M=0.05

∞== 22 0 Tω

31.6995.0 33 == Tω

044 =∞= Tω

055 =∞= Tω

066 =∞= Tω
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At time t the node acceleration, velocity, displacement and external applied 
load vectors are defined by (t)(t)t(t) Ruuu  and ),(, &&& , respectively.   

The unknown force vectors, t)(D ,,uuR & , are the forces associated with 
internal energy dissipation such as damping and nonlinear forces.  In most 
cases, these forces are self-equilibrating and do not contribute to the global 
equilibrium of the total structure. 

The sum of R and DR  can always be represented by the product )(tgF , 
where F is an Nd by L matrix of L linearly independent spatial load vectors 
associated with both linear and nonlinear behavior, and )(tg  is a vector of L 
time functions.  These time functions are directly specified for linear analysis, 
and are evaluated by iteration for nonlinear elements. For many problems, 
nonlinear forces may be restricted to a subset of all DOF, so that dNL < , 
although this is not required in what follows. 

The node-point lumped mass matrix, M , need not have mass associated 
with all degrees-of-freedom; therefore, it may be singular and mathematically 
positive semi-definite.  Also, external loads may be applied to displacement 
DOF that do not have mass and produce only static displacements. 

The linear elastic stiffness matrix K may contain rigid-body displacements, 
as is the case for ship and aerospace structures; therefore, it need not be 
positive-definite.  In order to overcome this potential singularity the term 

(t)uMρ  may be added to both sides of the equilibrium equations, where ρ is 
an arbitrary positive number. Or, Equation (1) can be written as 

(t)   = + RuMFguKuM =+ (t)(t)(t)(t) ρ&&   (2) 

While K and M may be singular, it is assumed here that the effective-
stiffness matrix, MKK ρ+= , is nonsingular.  Therefore, the effective-
stiffness matrix represents a real structure with the addition of external springs 
to all mass DOF; these springs have stiffness proportional to the mass matrix.  

The purpose of this paper is to present a general solution method for the 
numerical calculation of displacement and member forces.  The proposed 
method can be used for both static and dynamic loads and has the ability to 
include arbitrary damping and nonlinear energy dissipation.  The derivation of 
the vector-generation algorithm presented in this paper is self-contained and 
only uses the fundamental laws of physics and mathematics.  Near the end of 
the paper, it will be pointed out that each step in the solution algorithm is 
nothing more than the application of well-known numerical techniques that 
have existed for over fifty years.  It is an extension of Load Dependent Ritz 
vectors that have been previously described Wilson, 2003. 
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3.3. CHANGE OF VARIABLE 

Equation (2) is an exact equilibrium statement for the structure at all points 
in time.  The first step in the static or dynamic solution of this fundamental 
equilibrium equation is to introduce the following change of variable: 

(t)(t) ΦYu =     and    (t)(t) YΦu &&&& =   (3) 

The Nd  by N matrix Φ  of spatial vectors are calculated and normalized to 
satisfy the following orthogonality equations:  

ΨMΦΦ =T   (4) 

         or,       ΨIKΦΦIΦKΦ ρ−== TT  (5) 

The N by N diagonal matrices are I  for the unit matrix and Ψ  for the 
generalized mass matrix associated with each vector.   Therefore, Equation (2) 
can be written as a set of uncoupled equations of the following form: 

)( =  + T t(t)(t) RΦYIYΨ &&   (6) 

If N equals Nd , the introduction of this simple change of variables into 
Equation (2) does not introduce any additional approximations.  The number of 
nonzero terms in the diagonal matrix Ψ  indicates the maximum number of 
dynamic vectors and is equal to the number of lumped masses in the system (or, 
mathematically, the rank of the mass matrix).  If a vector has zero generalized 
mass it indicates that it is a static response vector.   

It is not practical to calculate all Nd static and dynamic shape functions for a 
large structure.  First, it would require a large amount of computer time and 
storage.  Second, a large number of vectors that are not excited by the loading 
may be calculated.  Therefore, a truncated set of N natural eigenvectors will be 
calculated that will produce an accurate solution for an optimum number of 
LDR vectors.  

In order to minimize the number of shape functions required to obtain an 
accurate solution the static displacement vectors produced by L linearly 
independent spatial functions )1(F associated with the loading )(tR  will be 
used to generate the first set of vectors.  The linear independent spatial load 
functions )1(F  can be automatically extracted from )(tR  based on the type of 
external global loading and the location of the nonlinear elements. 
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3.4. CALCULATION OF STIFFNESS ORTHOGONAL VECTORS 

The first step in the calculation of the orthogonal vectors defined by 
Equation (4) and (5) is to calculate a set of stiffness orthogonal vectors V  
where each vector satisfies the following equation: 









≠
=

=
nm 
 nm 

nn for   0
for   1

 = T
m

T
m fvvKv   (7) 

These stiffness orthogonal displacement and load vectors are calculated and 
stored in the following arrays: 

[ ]
[ ]

d

d

NN

NN

fffffF

vvvvvV

−−−−−−

−−−−−−

321

321

 = 

 = 
 (8) 

All vectors are generated in sequence Nn ---- ,2,1= .  After each vector is 
made stiffness orthogonal and normalized it is inserted into position N.  For 
example, consider a new displacement candidate vector v  (produced by the 
load vector f ) that is not stiffness orthogonal as defined by Equation (7).  This 
vector can be modified to be stiffness orthogonal by conducting the following 
numerical operations: 

Normalization vector by the application of the following equations: 

1fvfvffvv TT === ˆˆ    e  therefor;      ˆ     whereˆˆ   and   ˆ =ˆ βββ  (9) 

Remove from v̂  all previously calculated stiffness orthogonal vectors by the 
application of the following equations: 

 ˆ~   and   ˆ~ 
1

1

1

1
∑∑
−

=

−

=

−=−=
N

n
nn

N

n
nn fffvvv αα  (10a and b) 

Multiplication of Equation (10a) by KvT
n  yields the following equation: 

Nnn
T
nn

T
n

T
n  to1ˆ~ =−= KvvvKvvKv α  (11) 

If the new vector v~  is to be stiffness orthogonal vKv ~T
n  must equal zero.  

Therefore,  

  ˆ vKvT
nn =α   (12) 

After Equations (10a) and (10b) are evaluated they must be normalized by the 
application of the equations: 
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1fv

fvffvv T

=

==

N
T
N

NN

  therefore

  ;      ~~     where~   and   ~ = βββ
 (13) 

It is now possible to check if the candidate vector v  was linearly 
independent of the previously calculated vectors by checking if the proposed 
new vector Nv  is nothing more than numerical round-off.   Therefore, 

 vector orthogonal stiffness new a as reject      If Nvtol<β  (14) 

The value for   tol is selected to be approximately 10-7. 
The first block of candidate vectors is obtained by solving the following set 

of equations, where the static loads )1(F  and displacements )1(V  are Nd by L 
matrices: 

)1()1()1(  = FVLDLVK T =   (15) 

Note that the effective stiffness matrix need be triangularized, TLDLK = , 
only once.  Additional blocks of candidate vectors can be generated from the 
solution of the following recursive equation: 

)()1()(  = iii FVMVK =−   (16) 

If, during the orthogonality calculation, a new displacement or load vector 
in the block is identified as the same (parallel) as a previously calculated vector 
it can be discarded from the block and the algorithm is continued with a 
reduced block size.  If the block size is reduced to zero, prior to the production 
of Nd vectors, it indicates that all of the static and dynamic vectors, excited by 
the initial load patterns, have been found. 

3.5. MASS ORTHOGONAL VECTORS  

After all blocks of the stiffness orthogonal vectors are calculated they can be 
made orthogonal to the mass matrix by the introduction of the following 
transformation: 

  VZ=Φ   (17) 

Substitution of Equation (17) into Equation (4) produces the following N by N 
eigenvalue problem: 

  Ψ=ZM   (18) 

where MVVM T= .  The stiffness and mass orthogonal vectors are then 
calculated from Equation (17).  The static modes have zero periods, or 0=Ψn .  
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Therefore, in order to avoid all potential numerical problems, it is 
recommended that the classical Jacobi rotation method2 be used to extract the 
eigenvalues and vectors of this relatively small eigenvalue problem.  

Equation (2) can now be rewritten as 

(t)(t)(t)(t) FguMuKuM  =  + ρ−&&   (19) 

The transformation to modal coordinates produces the following uncoupled 
model equations: 

)( =][  + t(t)(t) T FgΦYΨIYΨ ρ−&&   (20) 

Therefore, a typical modal equation, n, can be written as 

)( =][1  + t(t)Y(t) Y T
nnnnn Fgφρ Ψ−Ψ &&   (21) 

The number of static shape functions is equal to the number of zero diagonal 
terms in the matrix Ψ .  For the static modes nΨ is equal to zero and the 
solution is written as  

)( = t(t)Y T
nn Fgφ   (22) 

For the dynamic elastic modes the generalized mass for each mode is nΨ  
and the classical free-vibration frequencies (radians per second) and the periods 
of vibrations (seconds) can be calculated from 

n
n

n
n T

ω
πρω 2     and     1

=−
Ψ

=   (23) 

Note that the eigenvalue nΨ  always has a finite numerical value; however, 
the frequency nω and period nT can have infinite numerical values and cannot 
be numerically calculated directly for all modes.  For example, Table 1 
summarizes the eigenvalues, frequencies and periods for the simple beam 
shown in Figure 1. 
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Table 1.  Eigenvalues for Simple Beam for 01.0=ρ  

Mode 
Number 

Eigenvalue 
nΨ  

Frequency 

    1
ρω −

Ψ
=

n
n

 

Period 

n
nT

ω
π2   =  

1 100 0  ∞ 
2 100 0  ∞ 
3 0.826 0.995 6.31 
4 0  ∞ 0 
5 0  ∞ 0 
6 0  ∞ 0 

 
The generalized stiffness and mass for the normalized vectors are as 

follows: 

=Ψ−= nn
T
n ρφφ 1K









Ψ
modes staticfor          1

modes dynamicfor   
modesbody -rigidfor            0

2
n nω  (25) 

 








Ψ=Ψ=

modes staticfor          0
modes dynamicfor       

modesbody -rigidfor       1

nnn
T
n

ρ
φφ M  (26) 

Therefore, it is necessary to save both the generalized stiffness and generalized 
mass, for each mode, in order to determine the static, dynamic or rigid-body 
response analysis of the mode. 

The solution for the dynamic modes can be obtained using the piece-wise 
exact algorithm [1].  For all rigid-body modes nΨ  will equal ρ/1 .  Therefore, 
their response can be calculated by direct, numerical or exact, integration from 

∫ ∫== dttYtYdttY(t)Yt(t)Y nnnn
T
nn )()(  and  , )(  ,)( = &&&&&& Rφρ  (24) 

The sum of the static, dynamic and rigid-body responses produces a unified 
method for the static and dynamic analysis of all types of structural systems. 
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3.6. MATHEMATICAL CONSIDERATIONS 

Except for reference to the Jacobi and piece-wise integration methods2 
Wilson, 2003, the numerical method for the generation of stiffness and mass 
orthogonal vectors presented is based on the fundamentals of mechanics and 
requires no additional references to completely understand.  However, it is very 
interesting to note that the method is nothing more than the application of 
several well-known numerical techniques: 

First, the change of variables introduced by Equation (3) is an application of 
the standard method of solving differential equation and is also known as the 
separation of variables in which the solution the solution is expressed in terms 
of the product of space functions and time functions.  A special application of 
this approach in classical structural dynamics is called the mode superposition 
method in which the static mode response is neglected. 

Second, the addition of the term (t)uMρ  to the stiffness matrix is called an 
eigenvalue shift in mathematics.  However, it is worth noting the zero 
eigenvalues associated with the static modes are not shifted. 

Third, the recurrence relationship, Equation (10), is identical to the inverse 
iteration algorithm for a single vector2.  Therefore, the approach is a power 
method that will always converge to the lowest eigenvalues of the system.   

Fourth, the series of vectors generated by the inverse iteration method is 
known as the Krylov Subspace .  A. N. Krylov, 1863-1945, was a well-known 
Russian engineer and mathematician who first studied the dynamic response of 
ship structures.  However, Krylov did not include static modes in his work. 

Fifth, orthogonality is maintained, Equations (14), by the application of the 
modified Gram-Schmidt algorithm.  Theoretically, after the initial block of 
orthogonal vectors are calculated, it is only necessary to make each new 
displacement vector orthogonal with respect to the previous two Krylov vectors.  
However, after many years of experience with the dynamic analysis of very 
large structural systems, we have found that it is necessary to apply the Gram-
Schmidt method to all previously calculated vectors in order that the same 
vectors are not regenerated. 

Sixth, the performance of the algorithm is improved if the load vectors 
)( iF , for each block, are made orthogonal with respect to the previously 

calculated displacement vectors, Equation (16), prior to the solution of the 
equilibrium equations.  This additional step has made the algorithm unique and 
very robust. 



EARTHQUAKE ENGINEERING AT BERKELEY 18 

3.7. LOAD PARTICIPATION RATIOS AND ERROR ESTIMATION 

In the analysis of structures subjected to three base accelerations there is a 
requirement that one must include enough modes to account for 90 percent of 
the mass in the three global directions.  However, for other types of loading, 
such as base displacement loads, there are no guidelines as to how many modes 
are to be used in the analysis.  The purpose of this section is to define two new 
load participation ratios, which can be calculated during the generation of the 
LDR vectors, to assure that an adequate number of vectors are used in a 
subsequent static or dynamic analysis.  

From Equation (24), a typical modal equation n for load pattern j, can be 
written as  

Nntg= Y(t)  + t)Y jj
T
nnn

2
nnn    to1)(( =ΨΨ Fφω&&  (27) 

The error indicators are based on the two different types of load functions 
jg(t) .  In one case the loads vs. time excite the low frequencies; and, in the 

other case the high frequencies are excited.  

3.7.1. Static Loads 

The first error estimator is a measure of the ability of a truncated set of 
mode shapes to capture the static response of the structural system.  For this 
case the load function jg(t)  is applied linearly from a value of zero at time zero 
to a value of 1.0 at the end of a very large time interval.  Therefore, the inertia 
terms can be neglected and Equation (27), evaluated at the end of the large time 
interval, is 

Nn= Y  j
T
nnsn

2
n      to1=Ψ Fφω   (28) 

Therefore the static mode participation can be written as  

Nn= Y  
n

2
n

j
T
n

nj      to1=
Ψω

φ F

  (29) 

From Equation (3) the approximate static displacement response of the 
structure due to N modes is 

 Y  
N

n
njnj ∑

=

=
1
φu   (30) 

The approximate strain energy associated with the displacement defined by 
Equation (30) is 
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 (31) 

The exact static displacement due to the load pattern can be calculated from the 
solution of the following static equilibrium equation: 

   jj FuK =   (32) 

The exact strain energy stored in the structure for the load pattern is calculated 
from 

  E j
T
jj

T
jsj FuuKu

2
1

2
1

==   (33) 

The static load participation ratio is defined as the ratio of the strain energy 
captured by the truncated set of vectors, jE , to the total strain energy, jE .  For 
the typical case where 0=ρ  the ratio is 

 
 

r 
j

T
j

N

n
j

T
n

sj Fu

F∑
== 1

2)(φ
  (34) 

It must be pointed out that for LDR vectors, this ratio is always equal to 1.0.  
Whereas, the use of the exact dynamic eigenvectors may require a large number 
of vectors in order to capture the static load response.  Also, if the static mode 
shapes are excited it is not possible for the exact dynamic eigenvectors to 
converge to the exact static solution. 

3.7.2. Dynamic Response 

The dynamic load participation ratio is based on the use of the application 
of the static loads as a delta function at time zero that produces an initial 
condition for a free vibration response analysis of the total structural system.  It 
is well known that any type of time function can be represented by the sum of 
these impulse functions applied at different points in time.  This type of loading 
will produce an initial velocity at the mass points of jj FMu 1−=& .  Therefore, 
the total kinetic input to the system, for a typical load vector j, is given by 



EARTHQUAKE ENGINEERING AT BERKELEY 20 

j
T
jj

T
jkjE FMfuMu 1

2
1

2
1 −== &&   (35) 

From Equation (3) the relationship between initial node velocities and the 
initial modal velocities is 

∑
=

N

1n
n= njj Y&& φu   (36) 

Therefore, the kinetic energy associated with the truncated set of vectors is  

∑
=

Ψ==
N

n
njnj

T
jkj YE

1

2

2
1

2
1 &&& uMu   (37) 

The initial modal velocity njY&  is obtained from the solution of Equation (27) as 

n

j
T
n

njY
Ψ

=
Fϕ&   (38) 

Substitution of Equation (38) into Equation (37) yields 

∑
= Ψ

=
N

n n

j
T
n

jkE
1

2)(
2
1 Fϕ

  (39) 

The dynamic load participation ratio is defined as the ratio of the kinetic 
energy captured by the truncated set of vectors, kjE , to the total kinetic energy, 

kjE .  For the typical case where 0=ρ  the ratio is 

 
 

r 
j

T
j

N

n
j

T
nn

dj FMF

F

1
1

2)(

−
=
∑

=
φω

  (40) 

A dynamic load participation ratio equal to 1.0 assures that all the energy input 
is captured for the dynamic load condition j.  In the case of base acceleration 
loading where the three load vectors are the directional masses, the dynamic 
load participation ratios are identical to the mass participation ratios. 

3.7.3. Automatic Termination of LDR Vectors 

Since the LDR vector algorithm starts with a full set of static vectors the 
static load participation factor will always equal 1.0.  Equation (40), the 
dynamic load participation factor can be evaluated after each block of vectors is 
generated.  Therefore, this factor can be computed as the vectors are calculated 
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and it can be used as an indicator to automatically terminate the generation of 
LDR vectors.  Based on experience, a dynamic load participation ratio of at 
least 0.95, for all load patterns, will assure accurate results for most types of 
loading.  This is a very important user option since the number of vectors 
requested need not be specified prior to the dynamic analysis. 

3.8. USE OF THE LDR ALGORITHM TO CALCULATE EIGENVECTORS 

The LDR vector algorithm, as presented in this paper, generates the 
complete Krylov subspace for a specified set of load vectors and errors in the 
resulting dynamic response analysis are minimized.  If one examines the 
frequencies associated with the LDR vectors it is found that all the lower 
frequencies are identical to the frequencies obtained from an exact eigenvalue 
analysis.  Since the approach is related to the power method this is to be 
expected. The higher modes produced by the LDR vector algorithm are linear 
combinations of the exact eigenvectors and components of the static response 
vectors.  The complete set of LDR vectors is the optimum set of vectors to 
solve the dynamic response problem associated with the specified static load 
patterns.  Therefore, the number of LDR vectors required will always be less 
than if the exact eigenvectors were used. 

If, for some reason, one wishes to calculate the exact eigenvalues and 
vectors the same numerical method can be used.  The initial displacement 
vectors need only be set to random vectors.  If, during the generation, vectors 
are generated which are identical to previously calculated vectors they can be 
replaced with new random displacement vectors.  The procedure can be 
terminated at any time; however, the higher frequencies will not be exact.  The 
introduction of iteration for each block can be used to calculate the exact 
eigenvalues and vectors.  Note that if the system contains M masses, the method 
will generate M exact eigenvectors; nevertheless, if random load vectors are 
used directly, instead of )1()(  −= ii MVF , the algorithm can continue and will 
produce Nd-M static response vectors which have infinite frequencies and zero 
periods. 

3.9. SUMMARY OF THE COMPLETE LDR VECTOR ALGORITHM 

The use of exact eigenvectors to reduce the number of degrees of freedom 
required to conduct a dynamic response analysis has significant limitations.  
The effects of the application of static loads to massless DOF cannot be taken 
into account.   In addition, for certain types of loading a large number of vectors 
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are required.  On the other hand, a large number of exact eigenvectors may be 
calculated that are not excited by the loading on the structure. 

The use of static and dynamic LDR vectors, presented in this paper, 
eliminates the problems associated with the use of the exact eigenvectors.  In 
addition, the LDR vector algorithm produces a unified approach to the static 
and dynamic analysis of many different types of structural systems.  In addition, 
it is possible to check if an adequate number of vectors are generated prior to 
the integration of the equations of motion. 

4. The Fast Nonlinear Analysis Method for Seismic Analysis 

The FNA method can be applied to both the static and dynamic analysis of 
linear or nonlinear structural systems.  A limited number of predefined 
nonlinear elements are assumed to exist.  Stiffness and mass orthogonal LDR 
vectors of the elastic structural system are used to reduce the size of the 
nonlinear system to be solved.  The forces in the nonlinear elements are 
calculated by iteration at the end of each time or load step.  The uncoupled 
modal equations are solved exactly for each time increment. 

The computational speed of the new FNA method is compared with the 
traditional “brute force” method of nonlinear analysis in which the complete 
equilibrium equations are formed and solved at each increment of load.  For 
many problems the new method is several magnitudes faster. 

The response of real structures when subjected to a large dynamic input 
often involves significant nonlinear behavior.  In general, nonlinear behavior 
includes the effects of large displacements and/or nonlinear material properties. 

The use of geometric stiffness and P-Delta analyses includes the effects of 
first-order large displacements.  If the axial forces in the members remain 
relatively constant during the application of lateral dynamic displacements, 
many structures can be solved directly without iteration. 

The more common type of nonlinear behavior is when the material stress-
strain, or force-deformation, relationship is nonlinear.  This is because of the 
modern design philosophy that “a well-designed structure should have a limited 
number of members which require ductility and that the failure mechanism be 
clearly defined”.  Such an approach minimizes the cost of repair after a major 
earthquake. 

4.1. FUNDAMENTAL EQUILIBRIUM EQUATIONS 

The FNA method is a simple approach in which the fundamental equations 
of mechanics (equilibrium, force-deformation and compatibility) are satisfied.  
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The exact force equilibrium of the computer model of a structural, at time t, is 
expressed by the following matrix equations: 

(t)(t)(t)(t)(t) R = R + Ku + uC + uM NL&&&  (41) 

where M C,   and K  are the mass, proportional damping and stiffness 
matrices, respectively.  The size of these three square matrices is equal to the 
total number of unknown node point displacements Nd.  The elastic stiffness 
matrix K neglects the stiffness of the nonlinear elements.  The time-dependent 
vectors && &u u u(t) (t) (t),  ,   and R(t)  are the node point acceleration, velocity, 
displacement and external applied load, respectively.  And NL(t)R is the global 
node force vector due to the sum of the forces in the nonlinear elements and is 
computed by iteration at each point in time. This approach was first applied to 
non-proportional damping systems in reference 10. 

If the computer model is unstable without the nonlinear elements one can 
add “effective elastic elements” (at the location of the nonlinear elements) of 
arbitrary stiffness.  If these effective forces, )(tuK e , are added to both sides of 
Equation (1) the exact equilibrium equations can be written as  

 uK RR  uKK + uC + uM ee (t)(t)(t)(t)(t)(t) +−=+ NL)(&&&  (42) 

where eK  is the effective stiffness of arbitrary value.  Therefore, the exact 
dynamic equilibrium equations for the nonlinear computer model can be written 
as  

 R  uK + uC + uM (t)(t)(t)(t) =&&&   (43) 

The elastic stiffness matrix K is equal to eKK + and is known.  The effective 
external load )(tR  is equal to (t)(t)t uK RR e+− NL)(  which must be 
evaluated by iteration.  If a good estimate of the effective elastic stiffness can be 
made the rate of convergence may be accelerated since the unknown load term 

(t)(t) uK R e+− NL will be small. 
Using the complete set of LDR orthogonal stiffness and mass orthogonal 

vectors, a set of uncoupled modal equations can be written as for the dynamic 
modes as 

NnfYYY i
nnnnnnn ......12 2 ==++ ωωξ &&&  (44) 

The complete solution algorithm is given in chapter 18 in reference 2.  Note that 
all mode equations are solved simultaneously and that model equations are 
coupled at each time step by the iterative term i

nf .   
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5. Solution for Wind and Wave Loadings 

The recurrence solution algorithm, summarized by Equation 13.16 in 
reference 2, is a very efficient computational method for arbitrary, transient, 
dynamic loads with initial conditions. The algorithm is unconditionally stable 
and exact for linear variation of load within a time increment.  Also it is 
possible to use this same simple solution method for arbitrary periodic loading 
as shown in Figure 3..  Note that the total duration of the loading is from −∞  
to +∞ and the loading function has the same amplitude and shape for each 
typical period Tp .  Wind, sea wave and acoustic forces can produce this type of 
periodic loading. 

T

pT pT pT pT
Time

F(t)

Mean
Wind
Pressure

 
Figure 3. Example of Periodic Loading 

For a typical duration Tp  of loading, a numerical solution, for each mode, can 

be evaluated by the application of Equation (   ) without initial conditions.  This 
solution is incorrect since it does not have the correct initial conditions.  
Therefore, it is necessary for this solution y t( )  to be corrected in order that the 
exact solution z t( )  has the same displacement and velocity at the beginning 
and end of each loading period.  In order to satisfy the basic dynamic 
equilibrium equation the corrective solution x t( )  must have the following 
form: 

x t x A t x A t( ) ( ) & ( )= +0 1 0 2   (45) 

where the dynamic functions are defined in Table 2. 
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Table 2  Summary of Notation used in Dynamic Response Equations 

CONSTANTS 

ω ω ξD = −1 2                     ω ωξ=                      ξ ξ
ξ

=
−1 2

   

FUNCTIONS 

S t e tt
D( ) sin ( )= −ξω ω                  C t e tt

D( ) cos( )= −ξω ω  

&( ) ( ) ( )S t S t C tD= − +ω ω           &( ) ( ) ( )C t C t S tD= − −ω ω  

A t C t S t1( ) ( ) ( )= + ξ                  A t S t
D

2
1( ) ( )=
ω

 

)()()(1 tStCtA &&& ξ+=                  )(1)(2 tStA
D

&&
ω

=  

The total exact solution for displacement and velocity for each mode can now 
be written as 

z t y t x t( ) ( ) ( )= +   (46a) 

&( ) &( ) &( )z t y t x t= +   (46b) 

In order that the exact solution is periodic the following conditions must be 
satisfied: 

z T zp( ) ( )= 0   (47a) 

&( ) &( )z T zp = 0   (47b) 

The numerical evaluation of Equations (47) produces the following matrix 
equation which must be solved for the unknown initial conditions: 
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The exact periodic solution for modal displacements and velocities can now be 
calculated from Equations (46a and 46b).  Hence, it is not necessary to use a 
frequency domain solution approach for periodic loading as suggested in most 
textbooks on structural dynamics. 

6. Personal Remarks 

The majority of the population in the United States has an obsession with 
the danger of experiencing an earthquake.  It is very common to meet someone 
from the East, South or Midwest, where hurricanes and tornadoes are very 
common, who states that he or she would not consider living in California 
because of the fear of earthquakes.  However, if one looks at the facts, the fear 
of earthquakes is not justified. 

 
During the past 500 years fewer than 2,000 people have been killed by 

earthquakes in the United States.  This figure is extremely small compared to 
many other typical causes of accidental deaths.  The largest causes are 
automobile crashes (over 30,000 each year), fire, wind and many other types of 
accidents.  In fact, during the past 500 years, several times more people have 
died in the United States from insect bites than from earthquakes.  Also, 
lightning has killed more people than earthquakes.  

 
Tornadoes and minor flooding are natural disasters that kill hundreds of 

individuals each year. However, most of these isolated incidences are not 
reported by the local or national news media; whereas, a small earthquake in the 
San Andreas Fault, which measured four on the Richter Magnitude Scale and 
caused no property damage or personal injuries, is often reported in the national 
and international press.   

 
Hurricanes Katrina, Rita and Wilma in 2005 devastated New Orleans, 

Southern Florida, and the Gulf Coastline killed over 1000 people and 
significant property damage.  In recent years, loss of life from hurricanes has 
been minimized because the magnitude and time of the hurricane can be 
predicted.  The largest number of fatalities from one hurricane in the US is 
estimated at 6,000 in Galveston Inland, TX in 1900.  In the US wind and floods 
have caused approximately 100 times more damage and loss of life than 
earthquakes. However, several times more money is spent on earthquake 
research than research on the design of wind resistant structures.   

 



EARTHQUAKE ENGINEERING AT BERKELEY 

 

27 

One cannot disregard, however, that one of the largest recorded natural 
disasters in recent years was the Tangshan earthquake (Richter Magnitude 7.9) 
in eastern China in 1976 in which over 600,000 people were killed.  During the 
past 50 years a large number of earthquakes, which have occurred outside the 
US, have killed over 10,000 people per earthquake. The most recent October 8, 
2005 (magnitude 7.6) affected the Kashmir regions of Pakistan and India. Initial 
estimates are that it killed over 50,000 people.  Nearly all these earthquakes 
have occurred in areas of the world with grossly inadequate design and 
construction standards.  However, the failure of a dam with a large reservoir 
during an earthquake could cause a large number of fatalities. Or, a large 
tsunami, generated from an earthquake off the west coast of the US, could kill 
thousands of people 

 
Most major structures, which are damaged during earthquakes, are designed 

by Civil Engineers, who have special training in Structural Engineering.  All 
ground-supported structures are designed in the vertical direction to support 
their own weight, which is commonly referred to as 1.0g in the vertical 
direction.  The present earthquake design specifications for most structures in 
the San Francisco Bay Area are less than 50 percent of the weight of the 
structure or 0.5g applied in the horizontal direction.   In aerospace engineering 
it is common to design structures to carry loads over 10g. Therefore, the 
common statement, it is not possible to design structures to resist earthquakes, 
is not true.  We have the technology to design earthquake resistant structures 
and it is an economic decision whether or not to obtain this goal.  In addition, 
earthquake resistant design can place limitations on the architectural form of the 
structure. 

Finally, it is apparent that there is a need to increase funding for applied 
research and development for wind and coastal engineering.  The fundamental 
research in computational aero and fluid dynamics has been completed.  We 
must create computer programs that are usable by the profession in order to 
improve the design of structures in wind and coastal areas. 
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